3.1.70 \(\int \frac {(e \cot (c+d x))^{3/2}}{a+b \cot (c+d x)} \, dx\) [70]

Optimal. Leaf size=302 \[ -\frac {2 a^{3/2} e^{3/2} \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {b} \left (a^2+b^2\right ) d}-\frac {(a-b) e^{3/2} \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a-b) e^{3/2} \text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a+b) e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a+b) e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d} \]

[Out]

-1/2*(a-b)*e^(3/2)*arctan(1-2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/(a^2+b^2)/d*2^(1/2)+1/2*(a-b)*e^(3/2)*arctan
(1+2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/(a^2+b^2)/d*2^(1/2)-1/4*(a+b)*e^(3/2)*ln(e^(1/2)+cot(d*x+c)*e^(1/2)-2
^(1/2)*(e*cot(d*x+c))^(1/2))/(a^2+b^2)/d*2^(1/2)+1/4*(a+b)*e^(3/2)*ln(e^(1/2)+cot(d*x+c)*e^(1/2)+2^(1/2)*(e*co
t(d*x+c))^(1/2))/(a^2+b^2)/d*2^(1/2)-2*a^(3/2)*e^(3/2)*arctan(b^(1/2)*(e*cot(d*x+c))^(1/2)/a^(1/2)/e^(1/2))/(a
^2+b^2)/d/b^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.25, antiderivative size = 302, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 11, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {3654, 3615, 1182, 1176, 631, 210, 1179, 642, 3715, 65, 211} \begin {gather*} -\frac {e^{3/2} (a-b) \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d \left (a^2+b^2\right )}+\frac {e^{3/2} (a-b) \text {ArcTan}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d \left (a^2+b^2\right )}-\frac {e^{3/2} (a+b) \log \left (\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}+\frac {e^{3/2} (a+b) \log \left (\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d \left (a^2+b^2\right )}-\frac {2 a^{3/2} e^{3/2} \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {b} d \left (a^2+b^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e*Cot[c + d*x])^(3/2)/(a + b*Cot[c + d*x]),x]

[Out]

(-2*a^(3/2)*e^(3/2)*ArcTan[(Sqrt[b]*Sqrt[e*Cot[c + d*x]])/(Sqrt[a]*Sqrt[e])])/(Sqrt[b]*(a^2 + b^2)*d) - ((a -
b)*e^(3/2)*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*(a^2 + b^2)*d) + ((a - b)*e^(3/2)*ArcT
an[1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*(a^2 + b^2)*d) - ((a + b)*e^(3/2)*Log[Sqrt[e] + Sqrt[
e]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*(a^2 + b^2)*d) + ((a + b)*e^(3/2)*Log[Sqrt[e] + Sq
rt[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*(a^2 + b^2)*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1182

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(-a)*c]

Rule 3615

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3654

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(3/2)/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1
/(c^2 + d^2), Int[Simp[a^2*c - b^2*c + 2*a*b*d + (2*a*b*c - a^2*d + b^2*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e +
 f*x]], x], x] + Dist[(b*c - a*d)^2/(c^2 + d^2), Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]*(c + d*Tan
[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2
, 0]

Rule 3715

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps

\begin {align*} \int \frac {(e \cot (c+d x))^{3/2}}{a+b \cot (c+d x)} \, dx &=\frac {\int \frac {-a e^2+b e^2 \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx}{a^2+b^2}+\frac {\left (a^2 e^2\right ) \int \frac {1+\cot ^2(c+d x)}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx}{a^2+b^2}\\ &=\frac {2 \text {Subst}\left (\int \frac {a e^3-b e^2 x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}+\frac {\left (a^2 e^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-e x} (a-b x)} \, dx,x,-\cot (c+d x)\right )}{\left (a^2+b^2\right ) d}\\ &=-\frac {\left (2 a^2 e\right ) \text {Subst}\left (\int \frac {1}{a+\frac {b x^2}{e}} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}+\frac {\left ((a-b) e^2\right ) \text {Subst}\left (\int \frac {e+x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}+\frac {\left ((a+b) e^2\right ) \text {Subst}\left (\int \frac {e-x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\left (a^2+b^2\right ) d}\\ &=-\frac {2 a^{3/2} e^{3/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {b} \left (a^2+b^2\right ) d}-\frac {\left ((a+b) e^{3/2}\right ) \text {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}+2 x}{-e-\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}-\frac {\left ((a+b) e^{3/2}\right ) \text {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}-2 x}{-e+\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {\left ((a-b) e^2\right ) \text {Subst}\left (\int \frac {1}{e-\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}+\frac {\left ((a-b) e^2\right ) \text {Subst}\left (\int \frac {1}{e+\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \left (a^2+b^2\right ) d}\\ &=-\frac {2 a^{3/2} e^{3/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {b} \left (a^2+b^2\right ) d}-\frac {(a+b) e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a+b) e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {\left ((a-b) e^{3/2}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {\left ((a-b) e^{3/2}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}\\ &=-\frac {2 a^{3/2} e^{3/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {b} \left (a^2+b^2\right ) d}-\frac {(a-b) e^{3/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a-b) e^{3/2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a+b) e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a+b) e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.54, size = 249, normalized size = 0.82 \begin {gather*} -\frac {(e \cot (c+d x))^{3/2} \left (8 b^{3/2} \cot ^{\frac {3}{2}}(c+d x) \, _2F_1\left (\frac {3}{4},1;\frac {7}{4};-\cot ^2(c+d x)\right )+3 a \left (2 \sqrt {2} \sqrt {b} \text {ArcTan}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )-2 \sqrt {2} \sqrt {b} \text {ArcTan}\left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )+8 \sqrt {a} \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {\cot (c+d x)}}{\sqrt {a}}\right )+\sqrt {2} \sqrt {b} \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )-\sqrt {2} \sqrt {b} \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )\right )\right )}{12 \sqrt {b} \left (a^2+b^2\right ) d \cot ^{\frac {3}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(e*Cot[c + d*x])^(3/2)/(a + b*Cot[c + d*x]),x]

[Out]

-1/12*((e*Cot[c + d*x])^(3/2)*(8*b^(3/2)*Cot[c + d*x]^(3/2)*Hypergeometric2F1[3/4, 1, 7/4, -Cot[c + d*x]^2] +
3*a*(2*Sqrt[2]*Sqrt[b]*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] - 2*Sqrt[2]*Sqrt[b]*ArcTan[1 + Sqrt[2]*Sqrt[Cot[
c + d*x]]] + 8*Sqrt[a]*ArcTan[(Sqrt[b]*Sqrt[Cot[c + d*x]])/Sqrt[a]] + Sqrt[2]*Sqrt[b]*Log[1 - Sqrt[2]*Sqrt[Cot
[c + d*x]] + Cot[c + d*x]] - Sqrt[2]*Sqrt[b]*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])))/(Sqrt[b]*(a
^2 + b^2)*d*Cot[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [A]
time = 0.61, size = 326, normalized size = 1.08

method result size
derivativedivides \(-\frac {2 e^{2} \left (\frac {-\frac {a \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}+\frac {b \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}}{a^{2}+b^{2}}+\frac {a^{2} \arctan \left (\frac {b \sqrt {e \cot \left (d x +c \right )}}{\sqrt {a e b}}\right )}{\left (a^{2}+b^{2}\right ) \sqrt {a e b}}\right )}{d}\) \(326\)
default \(-\frac {2 e^{2} \left (\frac {-\frac {a \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}+\frac {b \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}}{a^{2}+b^{2}}+\frac {a^{2} \arctan \left (\frac {b \sqrt {e \cot \left (d x +c \right )}}{\sqrt {a e b}}\right )}{\left (a^{2}+b^{2}\right ) \sqrt {a e b}}\right )}{d}\) \(326\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(d*x+c))^(3/2)/(a+b*cot(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-2/d*e^2*(1/(a^2+b^2)*(-1/8*a/e*(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)
+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4
)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))+1/8*b/(e^2)^(1/4)*2^(1/2)*(ln
((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^
(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)
*(e*cot(d*x+c))^(1/2)+1)))+a^2/(a^2+b^2)/(a*e*b)^(1/2)*arctan(b*(e*cot(d*x+c))^(1/2)/(a*e*b)^(1/2)))

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 177, normalized size = 0.59 \begin {gather*} -\frac {{\left (\frac {8 \, a^{2} \arctan \left (\frac {b}{\sqrt {a b} \sqrt {\tan \left (d x + c\right )}}\right )}{{\left (a^{2} + b^{2}\right )} \sqrt {a b}} - \frac {2 \, \sqrt {2} {\left (a - b\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left (a - b\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + \sqrt {2} {\left (a + b\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \sqrt {2} {\left (a + b\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )}{a^{2} + b^{2}}\right )} e^{\frac {3}{2}}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(3/2)/(a+b*cot(d*x+c)),x, algorithm="maxima")

[Out]

-1/4*(8*a^2*arctan(b/(sqrt(a*b)*sqrt(tan(d*x + c))))/((a^2 + b^2)*sqrt(a*b)) - (2*sqrt(2)*(a - b)*arctan(1/2*s
qrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*(a - b)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c
)))) + sqrt(2)*(a + b)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - sqrt(2)*(a + b)*log(-sqrt(2)/sqr
t(tan(d*x + c)) + 1/tan(d*x + c) + 1))/(a^2 + b^2))*e^(3/2)/d

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(3/2)/(a+b*cot(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}}}{a + b \cot {\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))**(3/2)/(a+b*cot(d*x+c)),x)

[Out]

Integral((e*cot(c + d*x))**(3/2)/(a + b*cot(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(3/2)/(a+b*cot(d*x+c)),x, algorithm="giac")

[Out]

integrate((e*cot(d*x + c))^(3/2)/(b*cot(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [B]
time = 1.63, size = 2500, normalized size = 8.28 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(c + d*x))^(3/2)/(a + b*cot(c + d*x)),x)

[Out]

atan(((((((32*(4*a^2*b^6*d^4*e^12 + 8*a^4*b^4*d^4*e^12 + 4*a^6*b^2*d^4*e^12))/d^5 - (32*(e*cot(c + d*x))^(1/2)
*((e^3*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*(16*b^9*d^4*e^10 + 16*a^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4
*e^10 - 16*a^6*b^3*d^4*e^10))/d^4)*((e^3*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) + (32*(e*cot(c + d*x)
)^(1/2)*(14*a*b^6*d^2*e^13 - 4*a^3*b^4*d^2*e^13 + 14*a^5*b^2*d^2*e^13))/d^4)*((e^3*1i)/(4*(b^2*d^2 - a^2*d^2 +
 a*b*d^2*2i)))^(1/2) + (32*(a*b^5*d^2*e^15 + 4*a^5*b*d^2*e^15 - 15*a^3*b^3*d^2*e^15))/d^5)*((e^3*1i)/(4*(b^2*d
^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) - (32*(e*cot(c + d*x))^(1/2)*(b^5*e^16 + 2*a^4*b*e^16))/d^4)*((e^3*1i)/(4*(
b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*1i - (((((32*(4*a^2*b^6*d^4*e^12 + 8*a^4*b^4*d^4*e^12 + 4*a^6*b^2*d^4*
e^12))/d^5 + (32*(e*cot(c + d*x))^(1/2)*((e^3*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*(16*b^9*d^4*e^10
 + 16*a^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4*e^10 - 16*a^6*b^3*d^4*e^10))/d^4)*((e^3*1i)/(4*(b^2*d^2 - a^2*d^2 + a*
b*d^2*2i)))^(1/2) - (32*(e*cot(c + d*x))^(1/2)*(14*a*b^6*d^2*e^13 - 4*a^3*b^4*d^2*e^13 + 14*a^5*b^2*d^2*e^13))
/d^4)*((e^3*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) + (32*(a*b^5*d^2*e^15 + 4*a^5*b*d^2*e^15 - 15*a^3*
b^3*d^2*e^15))/d^5)*((e^3*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) + (32*(e*cot(c + d*x))^(1/2)*(b^5*e^
16 + 2*a^4*b*e^16))/d^4)*((e^3*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*1i)/((((((32*(4*a^2*b^6*d^4*e^1
2 + 8*a^4*b^4*d^4*e^12 + 4*a^6*b^2*d^4*e^12))/d^5 - (32*(e*cot(c + d*x))^(1/2)*((e^3*1i)/(4*(b^2*d^2 - a^2*d^2
 + a*b*d^2*2i)))^(1/2)*(16*b^9*d^4*e^10 + 16*a^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4*e^10 - 16*a^6*b^3*d^4*e^10))/d^
4)*((e^3*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) + (32*(e*cot(c + d*x))^(1/2)*(14*a*b^6*d^2*e^13 - 4*a
^3*b^4*d^2*e^13 + 14*a^5*b^2*d^2*e^13))/d^4)*((e^3*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) + (32*(a*b^
5*d^2*e^15 + 4*a^5*b*d^2*e^15 - 15*a^3*b^3*d^2*e^15))/d^5)*((e^3*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/
2) - (32*(e*cot(c + d*x))^(1/2)*(b^5*e^16 + 2*a^4*b*e^16))/d^4)*((e^3*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i))
)^(1/2) + (((((32*(4*a^2*b^6*d^4*e^12 + 8*a^4*b^4*d^4*e^12 + 4*a^6*b^2*d^4*e^12))/d^5 + (32*(e*cot(c + d*x))^(
1/2)*((e^3*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2)*(16*b^9*d^4*e^10 + 16*a^2*b^7*d^4*e^10 - 16*a^4*b^5
*d^4*e^10 - 16*a^6*b^3*d^4*e^10))/d^4)*((e^3*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) - (32*(e*cot(c +
d*x))^(1/2)*(14*a*b^6*d^2*e^13 - 4*a^3*b^4*d^2*e^13 + 14*a^5*b^2*d^2*e^13))/d^4)*((e^3*1i)/(4*(b^2*d^2 - a^2*d
^2 + a*b*d^2*2i)))^(1/2) + (32*(a*b^5*d^2*e^15 + 4*a^5*b*d^2*e^15 - 15*a^3*b^3*d^2*e^15))/d^5)*((e^3*1i)/(4*(b
^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) + (32*(e*cot(c + d*x))^(1/2)*(b^5*e^16 + 2*a^4*b*e^16))/d^4)*((e^3*1i)/
(4*(b^2*d^2 - a^2*d^2 + a*b*d^2*2i)))^(1/2) + (64*a^2*b^2*e^18)/d^5))*((e^3*1i)/(4*(b^2*d^2 - a^2*d^2 + a*b*d^
2*2i)))^(1/2)*2i + atan(((((((32*(4*a^2*b^6*d^4*e^12 + 8*a^4*b^4*d^4*e^12 + 4*a^6*b^2*d^4*e^12))/d^5 - (32*(e*
cot(c + d*x))^(1/2)*(e^3/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2)*(16*b^9*d^4*e^10 + 16*a^2*b^7*d^4*e^
10 - 16*a^4*b^5*d^4*e^10 - 16*a^6*b^3*d^4*e^10))/d^4)*(e^3/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2) +
(32*(e*cot(c + d*x))^(1/2)*(14*a*b^6*d^2*e^13 - 4*a^3*b^4*d^2*e^13 + 14*a^5*b^2*d^2*e^13))/d^4)*(e^3/(4*(b^2*d
^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2) + (32*(a*b^5*d^2*e^15 + 4*a^5*b*d^2*e^15 - 15*a^3*b^3*d^2*e^15))/d^5)*
(e^3/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2) - (32*(e*cot(c + d*x))^(1/2)*(b^5*e^16 + 2*a^4*b*e^16))/
d^4)*(e^3/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2)*1i - (((((32*(4*a^2*b^6*d^4*e^12 + 8*a^4*b^4*d^4*e^
12 + 4*a^6*b^2*d^4*e^12))/d^5 + (32*(e*cot(c + d*x))^(1/2)*(e^3/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/
2)*(16*b^9*d^4*e^10 + 16*a^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4*e^10 - 16*a^6*b^3*d^4*e^10))/d^4)*(e^3/(4*(b^2*d^2*
1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2) - (32*(e*cot(c + d*x))^(1/2)*(14*a*b^6*d^2*e^13 - 4*a^3*b^4*d^2*e^13 + 14
*a^5*b^2*d^2*e^13))/d^4)*(e^3/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2) + (32*(a*b^5*d^2*e^15 + 4*a^5*b
*d^2*e^15 - 15*a^3*b^3*d^2*e^15))/d^5)*(e^3/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2) + (32*(e*cot(c +
d*x))^(1/2)*(b^5*e^16 + 2*a^4*b*e^16))/d^4)*(e^3/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2)*1i)/((((((32
*(4*a^2*b^6*d^4*e^12 + 8*a^4*b^4*d^4*e^12 + 4*a^6*b^2*d^4*e^12))/d^5 - (32*(e*cot(c + d*x))^(1/2)*(e^3/(4*(b^2
*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2)*(16*b^9*d^4*e^10 + 16*a^2*b^7*d^4*e^10 - 16*a^4*b^5*d^4*e^10 - 16*a^
6*b^3*d^4*e^10))/d^4)*(e^3/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2)))^(1/2) + (32*(e*cot(c + d*x))^(1/2)*(14*a
*b^6*d^2*e^13 - 4*a^3*b^4*d^2*e^13 + 14*a^5*b^2*d^2*e^13))/d^4)*(e^3/(4*(b^2*d^2*1i - a^2*d^2*1i + 2*a*b*d^2))
)^(1/2) + (32*(a*b^5*d^2*e^15 + 4*a^5*b*d^2*e^15 - 15*a^3*b^3*d^2*e^15))/d^5)*(e^3/(4*(b^2*d^2*1i - a^2*d^2*1i
 + 2*a*b*d^2)))^(1/2) - (32*(e*cot(c + d*x))^(1/2)*(b^5*e^16 + 2*a^4*b*e^16))/d^4)*(e^3/(4*(b^2*d^2*1i - a^2*d
^2*1i + 2*a*b*d^2)))^(1/2) + (((((32*(4*a^2*b^6...

________________________________________________________________________________________